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Abstract 54 

Sleep loss pervasively affects the human brain at multiple levels. Age-related changes in several sleep 55 

characteristics indicate that reduced sleep quality is a frequent characteristic of aging. Conversely, sleep 56 

disruption may accelerate the aging process, yet it is not known what will happen to the age status of the 57 

brain if we can manipulate the sleep conditions. To tackle this question, we employed an approach of 58 

brain age to investigate whether sleep loss would cause age-related changes in the brain. We included 59 

MRI data of 134 healthy volunteers (mean chronological age of 25.3, between the age of 19 and 39, 42 60 

females/92 males) from five datasets with different sleep conditions. Across three datasets with the 61 

condition of total sleep deprivation (> 24 hours of prolonged wakefulness), we consistently observed that 62 

total sleep deprivation increased brain age by 1-2 years regarding the group mean difference with the 63 

baseline. Interestingly, after one night of recovery sleep, brain age was not different from baseline. We 64 

also demonstrated the associations between the change in brain age after total sleep deprivation and the 65 

sleep variables measured during the recovery night. By contrast, brain age was not significantly changed 66 

by either acute (3 hours’ time-in-bed for 1 night) or chronic partial sleep restriction (5 hours’ time-in-bed 67 

for 5 continuous nights). Taken together, the convergent findings indicate that acute total sleep loss 68 

changes brain morphology in an aging-like direction in young participants and that these changes are 69 

reversible by recovery sleep. 70 

  71 
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Significance Statement 72 

Sleep is fundamental for humans to maintain normal physical and psychological functions. Experimental 73 

sleep deprivation is a variable-controlling approach to engaging the brain among different sleep 74 

conditions for investigating the brain’s responses to sleep loss. Here, we quantified the brain’s response to 75 

sleep deprivation by using the change of brain age predictable with brain morphological features. In three 76 

independent datasets, we consistently found increased brain age after total sleep deprivation, which was 77 

associated with the change in sleep variables. Moreover, no significant change in brain age was found 78 

after partial sleep deprivation in another two datasets. Our study provided new evidence to explain the 79 

brain-wide effect of sleep loss in an aging-like direction.  80 
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Introduction 81 

Sleep is essential for humans to maintain physical health (Reid et al., 2006; Grandner et al., 2012) and 82 

mental health (Freeman et al., 2017; Joao et al., 2018). Sleep-brain interactions have been demonstrated at 83 

multiple scales from molecules to whole-brain networks (Cirelli, 2009; Abel et al., 2013; Fultz et al., 84 

2019; Winer et al., 2019). Experimental sleep deprivation (SD) provides a variable-controlling approach 85 

to manipulating sleep conditions for investigating sleep behaviors and the brain's responses to inadequate 86 

sleep (Van Dongen et al., 2003; Durmer and Dinges, 2005; Elmenhorst et al., 2017; Elmenhorst et al., 87 

2018). Accompanied by the change of sleep behavior after SD, such as increased sleepiness (Hefti et al., 88 

2013) and changed sleep quality (Elmenhorst et al., 2008), sleep loss leads to widespread effects on brain 89 

anatomy, including decreased volume of grey matter across various brain regions (Liu et al., 2014; 90 

Akerstedt et al., 2020; Long et al., 2020; Sun et al., 2020), broad alterations in cortical microstructure 91 

(Voldsbekk et al., 2022), extensive alterations in white matter microstructure (Elvsashagen et al., 2015; 92 

Voldsbekk et al., 2021), and augmented expansion rate of ventricles (Lo et al., 2014). These prior efforts 93 

highlight that the effect of SD is not particularly situated in specific brain tissues or regions, but 94 

widespread over the brain. Therefore, it would be critical to seek an approach to integrating the 95 

widespread effect of SD for establishing a more consistent view of the neuroanatomical effect caused by 96 

SD.  97 

In parallel, it also remains unclear what would be the biological implication integrated from the 98 

widespread effect of SD on the human brain. Elicited by the associations between human aging and 99 

reduced sleep duration/increased sleep disruption (Lo et al., 2014; Mander et al., 2017; Boulos et al., 2019) 100 

and the relationships between brain aging and electroencephalographic activity during sleep (Panagiotou 101 

et al., 2017; Panagiotou et al., 2018; Sun et al., 2019), the age status of the human brain corresponds to 102 

the variation of sleep behaviors in part. Therefore, we hypothesized that the widespread effect of SD 103 

could be comprehensively represented by the brain-specific age status.  104 
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Following our hypothesis, we capitalized on the brain age model to capture the brain-specific age status 105 

that is referred to as the predicted chronological age by combining well-trained machine-learning models 106 

and brain-specific features (Franke et al., 2010; Cole and Franke, 2017). Given that the brain age models 107 

are supposed to be trained on a large sample of healthy subjects for robustly capturing the relationship 108 

between brain features and chronological age, the application of these models has shown not only high 109 

test-retest reliability (Cole et al., 2017; Elliott et al., 2019; Richard et al., 2020; Beheshti et al., 2021) but 110 

also effectiveness in a growing body of studies involved in brain maturation (Franke et al., 2012; Shi et al., 111 

2020; Truelove-Hill et al., 2020) and mental health (Cole et al., 2019b; Kaufmann et al., 2019; Sone et al., 112 

2021), in which the brain change is effectively represented by its specific age status. More importantly, 113 

brain age can be derived by integrating the high-dimensional brain-wide neuroanatomical features into a 114 

scalar index in a data-driven way, which is conceptually suitable for detecting the widespread effect of 115 

SD in the brain. 116 

Thus, we employed five datasets acquired from multiple sites with different extents of sleep restriction to 117 

explore and verify the SD effect through brain-specific age status. By using the publicly available 118 

brainageR model (Cole et al., 2018), we obtained the brain age of each participant among different sleep 119 

conditions. Building on them, we investigated the change in brain age after total sleep deprivation (TSD), 120 

partial sleep deprivation (PSD), and recovery sleep. To assess the behavioral implication of the changed 121 

brain age, we further explored the association between the change in brain age and the sleep measures 122 

derived from the polysomnographic data. To overview the study design, a workflow of our study was 123 

shown in Figure 1.   124 

 125 

  126 
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Materials and Methods 127 

Participants  128 

To explore and confirm the effect of SD on brain age, we employed the data from four different previous 129 

studies as well as a public dataset. As the exploratory (or main) dataset, we used the ‘Somnosafe’ dataset 130 

which was designed to investigate the effects of SD on human behavioral performance (Hennecke et al., 131 

2020). The participants were selected based on both questionnaires (covering general health status, 132 

substance abuse, sleep habits, and psychological screening) and a physical examination of blood and urine 133 

to exclude substance use and pregnancy. Only healthy and non-smoking volunteers were included (36 134 

individuals, aged 20-39 years, 22 males/14 females). As the confirmation datasets, we first used another 135 

dataset, referred to as the “CSR” (Coffee and Sleep Restriction) dataset, which was designed to study the 136 

interactions between daily coffee intake and chronic sleep deprivation (Baur et al., 2020). Only the data of 137 

the control group of this study which received decaffeinated coffee was included in the current analyses, 138 

to avoid the potential effect of coffee intake (15 individuals, aged 22-37 years, 8 males/7 females). In 139 

addition to the inclusion criteria outlined above, only healthy carriers of homozygous C-allele of the 140 

ADORA2A single-nucleotide variant rs5751876 (Retey et al., 2007) were recruited. More information on 141 

participant recruitment is available in the original publication (Baur et al., 2020). Then, we used a third 142 

dataset (referred to as the ‘NRU’ dataset) in which each of the recruited healthy subjects had a baseline 143 

night followed by a night without sleep (20 individuals, aged 20-29 years, all males). Next, we used a 144 

fourth dataset (referred to as the ‘UZH’ dataset) which aimed at investigating the effects of age on 145 

molecular substrates of sleep-wake regulation (Weigend et al., 2019). Of the original dataset consisting of 146 

9 men above 60 years old and 22 young men between 19 and 30 years old, only the young age group was 147 

included to match the age range of other datasets. Finally, we selected a public dataset from the 148 

Stockholm sleepy brain project (‘Stockholm’ dataset). More information about the dataset was available 149 

at https://openneuro.org/datasets/ds000201/versions/1.0.3. To match the age range of the previous 150 

datasets, we also only used the young group of the Stockholm datasets (41 individuals, aged 20-30 years, 151 
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20 males/21 females). All procedures of the Somnosafe and CSR datasets were approved by the Ethics 152 

Committee of the regional Medical Board (Ärztekammer Nordrhein). For the NRU dataset, the study was 153 

conducted in accordance with the Declaration of Helsinki and approved by the Ethics Committee for the 154 

capital region of Copenhagen. The UZH dataset was approved by the ethics committee of the Canton of 155 

Zürich for research on human participants. The Stockholm dataset was approved by the Regional Ethics 156 

Review Board of Stockholm for sharing the de-identified data. All participants of all studies gave written 157 

informed consent. 158 

Study protocols 159 

For the Somnosafe dataset, the subjects were randomly separated into either the control group (15 160 

individuals, aged 21-39 years, 10 males/5 females) or the experimental group (21 individuals, aged 20-32 161 

years, 12 males/9 females). All the subjects had one adaptation night followed by two baseline nights to 162 

accommodate the laboratory and the cognitive tests. Correspondingly, the subjects had 8-hour time in bed 163 

(TIB) for each night (23:00 – 07:00+1 or 24:00 – 08:00+1, ‘+1’ indicated the next day). The subjects of 164 

the experimental group were exposed to chronic PSD as 5-hour TIB (02:00 – 07:00 or 03:00 – 08:00) for 165 

five sequential nights. The subjects of the control group still had 8-hour TIB for five sequential nights. 166 

Thereafter, all subjects had a recovery night (8-hour TIB, 23:00 – 07:00+1 or 24:00 – 08:00+1). After the 167 

recovery night, all the subjects went through TSD (07:00 – 21:00+1 or 08:00 – 22:00+1, 38 hours). 168 

Finally, the subjects had another 10-hour recovery night (21:00 – 07:00+1 or 22:00 – 08:00+1). MRI data 169 

were respectively acquired in the morning after the 5-nights PSD, the morning after the first recovery 170 

night, and the morning after the night of TSD. For each night, the polysomnographic data were recorded. 171 

More details about the experimental design could be found in our previous study (Hennecke et al., 2020). 172 

A schematic overview of the experimental design is available in Figure 2A. 173 

For the CSR dataset, the experimental design was identical to the chronic PSD group of the Somnosafe 174 

dataset, except for no TSD. Briefly, one adaptation night of 8-hour TIB, two baseline nights of 8-hour 175 

TIB, five PSD nights of 5-hour TIB, and one recovery night of 8-hour TIB were sequentially conducted. 176 
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MRI data were acquired in the morning after the final baseline night, the 5-night PSD, and the recovery 177 

night, respectively. More information about the experimental design could be found in the original 178 

publication (Baur et al., 2020). A schematic overview of the experimental design is available in Figure 2B. 179 

For the NRU dataset, each subject had a baseline night with 8-hour TIB. Following the baseline night, 180 

each subject kept awake for 30 hours (no sleep for the corresponding night). After each night, the MRI 181 

data were acquired at around 6 p.m. to control for the circadian effect. A schematic overview of the 182 

experimental design is available in Figure 2C. 183 

For the UZH dataset, all the subjects sequentially went through one adaption night (8-hour TIB, 23:00 – 184 

07:00+1), one baseline night (8-hour TIB, 23:00 – 07:00+1), a 40-hour TSD, and a recovery night (10-185 

hour TIB, 22:30 – 08:30+1). MRI scans were conducted after the baseline night, after the night of TSD, 186 

and after the recovery night, respectively. The start time of each scanning session was at roughly the same 187 

clock time (04:23 pm ± 23 mins). More details about the experimental design are available in the original 188 

report of that study (Weigend et al., 2019). A schematic overview of the experiment is available in Figure 189 

2D. 190 

The experimental design of the Stockholm dataset was based on acute PSD, where all the subjects were 191 

exposed to one night of PSD with 3-hour TIB. The subjects were randomly assigned into one of the two 192 

sessions (session 1: a full-sleep night followed by a PSD night; sleep session 2: a PSD night followed by a 193 

full-sleep night). The time interval between the full-sleep night and the PSD night was one month. MRI 194 

scanning was performed in the afternoon or the evening after the final night of each session. More details 195 

regarding the experimental design of the Stockholm dataset could be found in the previous publication 196 

(Nilsonne et al., 2017). A schematic overview of the experimental design is available in Figure 2E. 197 

Polysomnographic data 198 

Regarding the Somnosafe dataset, the polysomnographic data were acquired using electrodes attached 199 

according to the international 10–20 system (electroencephalogram: F4-A1, C4-A1, O2-A1, F3-A2, C3-200 

A2, O1-A2; electrocardiography; electromyography; sampling rate: 256 Hz) (Hennecke et al., 2020). 201 
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Amplification with a time constant of 2.3 s and a low-pass filter (−6 dB at 70 Hz) were applied to the 202 

electroencephalogram signal. We further used the polysomnographic data of each night to 203 

correspondingly derive the sleep variables according to the American Academy of Sleep Medicine criteria 204 

(Berry et al., 2017). In detail, we included 13 summary measures of polysomnographic data in the current 205 

study. Regarding sleep period time, we calculated minutes spent in N1, N2, N3, rapid eye movement 206 

sleep, wake, the number of sleep stage changes, and the number of sleep stage changes per hour. 207 

Regarding sleep latency (unit: minutes), sleep onset latency, N3 sleep onset latency, and rapid eye 208 

movement (REM) onset latency were included. Regarding total sleep time, the number of arousals and the 209 

number of arousals per hour were included. Sleep efficiency was finally included. 210 

MRI acquisition  211 

For both the Somnosafe dataset and the CSR dataset, the T1-weighted (T1w) MRI data were acquired in 212 

the same scanner (3-Tesla Siemens Biograph mMR), using an MPRAGE sequence (176 sagittal slices, 213 

slice thickness 1 mm, field of view (FoV) = 256 × 256 mm2, matrix size = 176 × 256 × 256; voxel size = 214 

1 × 1 × 1 mm3). For the NRU dataset, a 3-Tesla Siemens Prisma scanner was used to acquire the T1w 215 

dataset with an MPRAGE sequence (208 sagittal slices, slice thickness 1 mm, FoV = 256 × 256 mm2, 216 

matrix size = 208 × 256 × 256; voxel size = 1 × 1 × 1 mm3). For the UZH dataset, the T1w data were 217 

acquired using a combined 3-Tesla PET/MR scanner (SIGNA PET/MR; General Electric Healthcare) 218 

with an axial BRAVO sequence (176 axial slices, slice thickness 1 mm, FoV = 256 × 256 mm2, matrix 219 

size = 256 × 256 × 176; voxel size = 1 × 1 × 1 mm3). For the Stockholm dataset, the T1w data were 220 

acquired using a 3-Tesla MRI scanner (Discovery 750; General Electric Healthcare) with a sagittal 221 

BRAVO sequence (180 sagittal slices, slice thickness 1 mm, FoV = 240.03 × 240.03 mm2, matrix size = 222 

180 × 512 × 512; voxel size = 1 × 0.4688 × 0.4688 mm3). 223 

Brain age prediction 224 
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Before predicting the brain age, we conducted visual examinations of the T1w data avoiding the existence 225 

of excessive noise. Most of the included data showed high quality, except that two participants in the 226 

Somnosafe dataset and two participants in the UZH dataset were removed due to the existence of heavy 227 

noise for at least one T1w scan. So, the Somnosafe dataset finally included the T1w data of 34 228 

participants (control group: 14 individuals, aged 21-39 years, 5 females; experimental group: 20 229 

individuals, aged 20-32 years, 8 females). The UZH dataset finally included 20 participants (aged 19-30 230 

years, all males). A summary table with the demographic characteristics of the participants of all datasets 231 

was shown in Table 1. Additionally, the bias field correction of all the T1w images was via ANTs' 232 

N4BiasFieldCorrection (Tustison et al., 2010). 233 

A large sample was required for training a brain age model of high robustness and generalization ability, 234 

which was not feasible in our scenario. We alternatively used a publicly available model which had been 235 

well-trained. Specifically, we adopted the brainageR v2.1 model which was trained in 3,377 healthy 236 

individuals (mean age = 40.6 years, age range 18-92 years), and tested on 857 individuals (mean age = 237 

40.1 years, age range 18-90 years) (Cole et al., 2015; Cole et al., 2017; Cole et al., 2018). The brainageR 238 

uses the voxel-wise volume of grey matter, white matter, and cerebrospinal fluid (CSF), which are 239 

segmented by SPM12 (https://www.fil.ion.ucl.ac.uk/spm), normalized to the MNI152 standard space by 240 

DARTEL (Ashburner, 2007), and smoothed with a 4 mm full-width-at-half-maximum (FWHM) 241 

smoothing kernel, as features integrated into the well-trained model of Gaussian processes regression to 242 

predict the brain age. More details about the brainageR model are available through GitHub 243 

(https://github.com/james-cole/brainageR). 244 

Statistical analysis 245 

Regarding the Somnosafe, CSR, and UZH datasets, we adopted a one-way repeated measures analysis of 246 

variance (ANOVA) to test the effect of SD over three conditions which were referred to as the within-247 

subject factor. We further included gender (if applicable), group (either control or experimental group; 248 

only for the Somnosafe dataset), and chronological age as the between-subjects variables in the repeated 249 
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measures ANOVAs. Given that there were only two conditions (before/after SD) for both the NRU 250 

dataset and the Stockholm dataset, we used a paired sample t-test to determine the change in brain age 251 

between the two conditions for all datasets for consistency. We also conducted the post-hoc Tukey 252 

honestly significant difference test following the repeated measures ANOVA. All the analyses were 253 

conducted by using the Statistics and Machine Learning Toolbox in Matlab (Version 9.5.0, R2018b). 254 

Additionally, in order to make a statement about the confidence into the null results, we selected the 255 

Bayesian repeated measures ANOVA to provide the corresponding Bayesian factor (BF) by rerunning the 256 

analysis with the same data used by the frequency-statistical ANOVA above. We specifically used JASP 257 

(Version 0.16.4) to conduct the analysis, which is an open-source software supported by the University of 258 

Amsterdam (https://jasp-stats.org/).   259 
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Results 260 

Assessing the effect of sleep deprivation on brain age in the Somnosafe dataset 261 

Regarding the Somnosafe dataset, we analyzed the variation of brain age that was derived from the T1w 262 

data acquired after each of the sequential sleep conditions including five baseline nights (or 5 chronic 263 

sleep restricted baseline nights for the experimental group), one night of recovery sleep, and one night of 264 

TSD (see Methods for details on the individual protocol).  265 

Specifically, regarding the within-subject effect, we found an effect of sleep condition on brain age (F(2, 266 

58) = 7.49, p < 0.002, η2 = 0.21) via the repeated measures ANOVA where the sphericity assumption was 267 

not violated (Table 2). No interactions were found between the within-subject factor (sleep conditions) 268 

and the between-subjects variables including gender, group, and the interaction of both (Table 2). To 269 

illustrate the pair-wise comparisons clearly, the scatter plots of both the individual brain age under each of 270 

the sleep conditions and the corresponding change between any two conditions were shown in Figure 3A. 271 

Through the paired sample t-tests, we found that the brain age derived after the night of TSD increased 272 

compared to the brain age derived either after the baseline night (t(33) = 3.38, p < 0.002, mean difference 273 

= 0.94 years) or after the recovery night following the repeated PSD (t(33) = 2.93, p < 0.01, mean 274 

difference = 0.90 years). No significant difference was found between the recovery and baseline condition 275 

(t(33) = 0.16, p = 0.88, mean difference = 0.040 years). We also conducted the post-hoc Tukey test to 276 

confirm the above pair-wise comparison. We further broke down the effect of sleep deprivation into each 277 

group, i.e., the control group and the experimental group, by conducting another post-hoc Tukey test 278 

within each group. Similar patterns across sleep conditions were found within each group, although only 279 

the change in brain age between the conditions of baseline and TSD survived Tukey's multiple 280 

comparison corrections in the experimental group (p = 0.015 corrected by Tukey’s honest significance 281 

test, mean difference = 1.09 years). 282 

Regarding the between-subjects analysis, no significant effects were found in terms of gender, group, and 283 

the interaction of both on brain age (mean of the within-subject factor), while the chronological age 284 
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presented a significant between-subjects effect on the brain age, showing the significant correspondence 285 

between the chronological age and the predicted age (F(1, 29) = 14.12, p < 0.001, η2 = 0.33). 286 

The performance of the prediction of brain age was evaluated from two aspects. First, high Pearson 287 

correlation coefficients were found among the predicted age of different conditions (minimal Pearson 288 

correlation coefficient r > 0.95), which illustrated the reliability of the brain age model and the 289 

correspondence of subjects across the three conditions. Second, for each condition, the predicted age was 290 

also highly correlated with the chronological age, indicated by a high Pearson correlation coefficient (> 291 

0.60) and a low mean absolute error (MAE < 3.95 years). The MAE was referred to as the average 292 

absolute difference between the predicted age and the chronological age. 293 

Verifying the effect of total sleep deprivation on brain age  294 

To confirm the effect of TSD found in the Somnosafe dataset, we analyzed another two independent 295 

datasets and compared the derived brain age between the conditions of baseline and TSD using a paired 296 

sample t-test. The brain age also increased after TSD in both the NRU dataset (TSD – baseline: t(19) = 297 

3.21, p < 0.005, mean difference = 2.13 years; Figure 3B) and the UZH dataset (TSD – baseline: t(19) = 298 

2.37, p < 0.05, mean difference = 1.07 years; Figure 3C).  299 

In order to test whether the significant effect of TSD on brain structures could be detected by using 300 

univariate comparison, we further leveraged the paired t-test to respectively conduct the comparisons of 301 

grey matter and white matter between the state of TSD and the baseline state based on the grey matter 302 

volume and the white matter volume that were the same features used to predict the brain age. In the three 303 

datasets, we did not find significant clusters after the correction of multiple comparisons (false discovery 304 

rate (FDR) < 0.05) in either grey matter or white matter. We further demonstrated that the similarity 305 

between the statistic maps (the T maps) of the three datasets was quite low (Figure 3D).  306 

 307 

 308 
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Repeated partial sleep deprivation and acute partial sleep deprivation do not affect brain age 309 

Regarding the findings in the Somnosafe dataset, there was no significant condition-by-group (i.e., 310 

experiment/control group) interaction effect on brain age, which suggested to further confirm the effect of 311 

partial sleep deprivation on the brain age. Therefore, we next assessed the effect of PSD by tracing the 312 

change in brain age from the baseline. Specifically, we compared the derived brain age between the 313 

conditions of baseline and PSD in the CSR dataset (5-nights repeated PSD; 5 hours in bed per night) and 314 

in the Stockholm dataset (1-night acute PSD; 3 hours in bed) respectively, via a paired sample t-test. No 315 

significant difference between PSD and baseline was found in both datasets (for the CSR dataset, t(14) = 316 

0.74, p = 0.47; for the Stockholm dataset, t(40) = -1.70, p = 0.098; Figure 4A & 4B). We further provided 317 

the Bayesian factor (BF) to describe the confidence into the null result of the PSD effects (for the CSR 318 

dataset, BF10 = 0.41; for the Stockholm dataset, BF10 = 0.76), which indicated anecdotal evidence to reject 319 

the null hypothesis. 320 

Brain age returns to the baseline level after recovery sleep 321 

We examined the effect of recovery sleep on brain age following the baseline-SD-recovery sequence. 322 

Given that we had two types of SD, i.e., PSD and TSD, we separately assessed the effect of recovery 323 

sleep under different conditions of SD. In the PSD dataset (i.e., the CSR dataset), no significant change in 324 

brain age in the baseline-CSD-recovery sequence was found by conducting paired sample t-tests between 325 

each pair of conditions (Figure 4A). This was consistent with the analysis of repeated ANOVA in which 326 

no significant within-subject effect was found (F(2, 24) = 0.52, p = 0.65, η2 = 0.035, BF10 = 0.02) and the 327 

sphericity assumption was not violated (the Mauchly’s test for sphericity: p = 0.17, DF = 2). Here, 328 

chronological age and gender were included as the between-subjects variables. In the TSD dataset (i.e., 329 

the UZH dataset), brain age returned to the baseline level after 1-night recovery sleep (Figure 3C), 330 

revealing no significant difference between the baseline and the recovery conditions (recovery – baseline: 331 

t(19) = -0.47, p = 0.64, BF10 = 0.33). Similarly, a difference between the recovery and the TSD conditions 332 

was found (TSD – recovery: t(19) = 2.24, p < 0.05, mean difference = 0.95 years; Figure 3C). 333 
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Correspondingly, a significant within-subject effect was found via the repeated measures ANOVA (F(2, 334 

36) = 4.54, p < 0.05 after Greenhouse-Geisser correction, η2 = 0.20). As the sphericity assumption was 335 

slightly violated here (p = 0.041, DF = 2), we used the Greenhouse-Geisser approach to correct the p 336 

value of the within-subject effect. Additionally, the chronological age was included as the between-337 

subjects variable.  338 

Associations between the changes in sleep behavior and brain age    339 

To gain more understanding of the increased brain age after TSD, we analyzed the associations between 340 

the change in brain age and sleep behaviors including the measure of sleepiness (Karolinska Sleepiness 341 

Scale [KSS], a 9-point scale spanning from extremely alert [= 1] to extremely sleepy [= 9]) (Akerstedt 342 

and Gillberg, 1990) and the measures derived from the polysomnographic data in the Somnosafe dataset 343 

(34 subjects).  For the correlation analyses, the change in brain age (TSD – baseline or TSD – recovery) 344 

was normalized by dividing the corresponding chronological age. Here, the recovery sleep was referred to 345 

as the first recovery night after repeated PSD (R, Figure 2A). 346 

The change in KSS score (TSD – baseline) was positively associated with the corresponding change in 347 

brain age (TSD – baseline; Pearson correlation coefficient r = 0.36, p < 0.05; Figure 5A). We further 348 

included group and gender as covariates to conduct another partial correlation to find a similar effect (r = 349 

0.415, p < 0.05). Moreover, no significant association was found between the change in KSS score (TSD 350 

– recovery) and the change in brain age (TSD – recovery; r = 0.23, p = 0.20).  351 

Regarding the polysomnographic data, we included 13 summary measures (see Methods for details on 352 

these measures). We focused on the polysomnographic measures of the final recovery sleep following 353 

TSD (R2, Figure 2A), which was the reaction to the sleep debt after TSD. We normalized these measures 354 

of R2 using the same measures at baseline, i.e., R2 / baseline, to increase the comparability across 355 

participants. After conducting the FDR correction, we found two kinds of significant associations 356 

between normalized sleep measures and the change of brain age between the conditions of TSD and 357 

baseline. Specifically, the normalized wake time (WT) during sleep period time (SPT) positively 358 
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correlated with the change of brain age (TSD – baseline; r = 0.55, p < 0.05, FDR corrected; Figure 5B). 359 

The normalized time spent in stage N1 sleep during SPT was negatively associated with the change of 360 

brain age (TSD – baseline; r = -0.51, p < 0.05, FDR corrected; Figure 5C). Additionally, when adding 361 

gender and group as covariates, we could still find the two kinds of associations after FDR correction. 362 

  363 
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Discussion 364 

Along with the in-lab manipulation of sleep deprivation conditions, this study was built on a series of 365 

studies conceptualizing brain age as a brain-specific biomarker for aging and mental health (Cole et al., 366 

2019a; Elliott et al., 2019; Franke and Gaser, 2019; Kaufmann et al., 2019; Bashyam et al., 2020). Large 367 

sample size would be beneficial to train the brain age model of high reliability, which was not applicable 368 

to our datasets. So, instead of training a new prediction model of brain age with the current datasets, we 369 

turned to use the brainageR model which had been trained on a large sample. This might be considered as 370 

a general way to estimate brain age in small samples as we did not fine-tune any parameter specific to our 371 

datasets, which was conceptually similar to external validation of the established machine learning model 372 

(Ho et al., 2020). One additional consideration to using brainageR in our study was that the model 373 

simultaneously adopted grey matter, white matter, and CSF as features, which fitted the previous findings 374 

of the widespread effects of SD on the human brain (Elvsashagen et al., 2017; Shokri-Kojori et al., 2018; 375 

Eide et al., 2021; Voldsbekk et al., 2021). More interestingly, the benefits and the uniqueness of using the 376 

approach of brain age in our analysis were highlighted by the inconsistent findings in the univariate 377 

comparisons of brain structures by using the same data from the prediction of brain age (Figure 3D). 378 

Finally, given the high test-retest reliability of brain age models (Richard et al., 2020; Beheshti et al., 379 

2021), we focused on the change of brain age across experimental conditions during a short period for the 380 

same participant, which would be beneficial to reduce the systematic bias of prediction model. 381 

The main findings of our study pointed out the increased brain age after acute TSD. In contrast, we did 382 

not find a significant change in brain age with the condition of either acute or repeated PSD, which might 383 

indicate minor brain morphological changes under these conditions. An alternative explanation might be 384 

that our statistical power was limited by the current sample size and not able to detect a comparatively 385 

weak effect. Importantly, although the MRI scanners and the corresponding sequences were not the same 386 

across our datasets, the effect of acute TSD on brain age was confirmed by two additional datasets, thus, 387 

making it unlikely an effect caused by random errors. More interestingly, we confirmed the effect of 10-388 
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hour recovery sleep on brain age which returned to baseline level. The recovery effect was also found in 389 

previous studies regarding cognitive performances (Yamazaki et al., 2021) and brain functional 390 

connectivity as determined by fMRI (Chai et al., 2020). 391 

Given the short time interval of about 24 hours between the MRI scans in our datasets, our findings 392 

demonstrated the sensitivity of brain age to the dynamic change of brain morphology in such a short 393 

period. Similarly, previous studies found a change in brain age over a longer period such as the menstrual 394 

cycle (Franke et al., 2015). Moreover, the long-term associations between neuroanatomy and sleep 395 

behavior (Lo et al., 2014; Tahmasian et al., 2020) might further contribute to explaining that the 396 

neuroanatomy-based brain age showed a response to SD. Especially, a recent study found a significant 397 

association between changes in brain age and lower scores on the Pittsburgh Sleep Quality Index in an 398 

elderly population and even claimed that it was related to a 2-year increase above the chronological age 399 

(Ramduny et al., 2022). This finding complemented our assessments and supported the relevance of the 400 

use of MRI-based brain age. Digging deeper into the biological factor underpinning the potential change 401 

of brain morphology induced by sleep deprivation, it may be related to the brain interstitial volume which 402 

was found to increase by 60% after natural sleep in live mice (Xie et al., 2013). Correspondingly, the flow 403 

of CSF into and out of the human brain was found to be affected by slow oscillatory neuronal activity 404 

during natural sleep (Fultz et al., 2019). More directly, the increased amount of CSF tracer was found in 405 

the cerebral cortex and white matter after 24-hour TSD, indicating impaired CSF tracer movement in the 406 

brain parenchyma (Eide et al., 2021). Therefore, acute TSD might partly disturb these biological 407 

processes to affect the inward/outward gradient of CSF which in turn would promote the dynamic change 408 

of brain morphology. Besides the flow of CSF, other neurobiological factors might also account for our 409 

results about the change in brain age that were predicted by using the features of grey matter and white 410 

matter. Specifically, sleep deprivation was found to affect neuroplasticity (Alkadhi et al., 2013; Krause et 411 

al., 2017), which might relate to the myelin dynamics of the brain (de Vivo and Bellesi, 2019). 412 

Interestingly, the myelination of the brain could be affected by the oligodendrocyte precursor cells that 413 

have faster proliferation during sleep (Bellesi et al., 2013; Grumbach et al., 2020). Therefore, prolonged 414 
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wakefulness especially caused by total sleep deprivation might affect myelination by impairing the 415 

oligodendrocyte functions (Bellesi, 2015), which could further be detected by MRI signals. 416 

We measured the sleep behavior using two types of measures including a subjective one (KSS score) and 417 

an objective one (polysomnographic data) in the Somnosafe dataset. We found a positive association 418 

between the change in KSS score and the change in brain age, where an increased brain age indicated 419 

increased sleepiness after TSD. However, we should notice that the different or nonsynchronous effects of 420 

recovery sleep after repeated PSD might exist on brain age and subjective sleepiness. For example, 421 

compared to the baseline, we did not find that PSD significantly affected the brain age after the recovery 422 

sleep following PSD. In contrast, the fast recovery of KSS outcomes during the recovery sleep after PSD 423 

was found in previous studies (Banks et al., 2010). 424 

Regarding the polysomnographic data, we focused on the data of the recovery night, which represented 425 

the reaction of sleep behavior to prolonged wakefulness. We considered the changed brain age as a 426 

representative response of brain morphology to TSD. Specifically, the wake time in the recovery night 427 

following TSD showed a positive association with increased brain age. Correspondingly, the sleep 428 

efficiency in the recovery night following TSD was negatively correlated with the change in brain age, 429 

although it didn’t survive the FDR correction for multiple comparisons. Noticeably, sleep efficiency in 430 

the recovery night following TSD increased in all subjects compared to baseline, suggesting an increase 431 

in sleep pressure after the TSD. This was further supported by our finding of the negative relationship 432 

between the changed brain age and the changed N1 sleep period, which indicated that the participants 433 

having increased brain age after total sleep deprivation tended to show a quicker transition from being 434 

awake to falling asleep. More interestingly, in a recent large meta-analysis, wake time and sleep 435 

efficiency were found as two prominent polysomnographic parameters respectively showing a significant 436 

increase or decrease with normative aging (Boulos et al., 2019). Therefore, these results indicated the 437 

aging-like sleep quality accompanied by increased brain age after TSD, which was consistent with 438 

previous studies showing the aging-like effect of SD on cognitive performance (Harrison et al., 2000) and 439 

brain network characteristics (Zhou et al., 2017) in young cohorts.  440 
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Several limitations and corresponding future directions are worth mentioning. First, because we used 441 

brain age to index the features of the whole brain, which was based on a non-linear prediction model, it’s 442 

not straightforward to demonstrate whether there would be specific brain regions affected by SD to drive 443 

the increase in brain age. Second, although the complexity of in-lab sleep experiments may restrict the 444 

number of subjects, larger studies are desirable to confirm the effects of sleep deprivation, especially for 445 

chronic or partial sleep deprivation which may have weak effects compared to TSD. Third, although there 446 

was no significant interaction between the sex variable and the conditions of sleep deprivation in our 447 

ANOVA results, we should not neglect the effect of sex differences on sleep. Therefore, further 448 

comparative studies separately conducted in each gender may still be required when having enough 449 

samples. The limitations notwithstanding, we provided new evidence that acute sleep deprivation drove 450 

the brain morphology and the corresponding sleep behavior in an aging-like direction, emphasizing the 451 

relevance of sleep for aging. Brain age also provided a data-driven approach to identify the individualized 452 

vulnerability/resistance to sleep deprivation. Especially, total sleep deprivation for one whole night was 453 

demonstrated to be an efficient therapeutic tool again depression (Giedke and Schwarzler, 2002), 454 

although its effect might not be highly sustainable (Ioannou et al., 2021). Our findings indexed the 455 

individualized brain structural response to sleep deprivation by using brain age, which may be further 456 

combined with wake therapy of depression to interpret or even predict the sustainability of the therapeutic 457 

effect. 458 

  459 
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Figure/Table Legends 648 
 649 
Figures: 650 
 651 
Figure 1 652 
Figure 1. A schematic diagram showing the analytic steps. 653 

 654 

Figure 2 655 
Figure 2. The schematic demonstration of the study protocol for each dataset. (A) The 656 
experimental protocol for the Somnosafe dataset. TIB is for the time in bed. ‘A’ is for the 657 
adaption day. B1 and B2 are for the two baseline days. E1-5 are for the 5-night chronic sleep 658 
deprivation (the experimental group received 5-h TIB per night, the control group had 8-h TIB 659 
per night). R is for the first recovery night. TSD is for the total sleep deprivation of the whole 660 
night. R2 is for the second recovery night following TSD. (B) The experimental protocol for the 661 
CSR dataset. All the abbreviations have the same meaning as the Somnosafe dataset. (C) The 662 
experimental protocol for the NRU dataset. ‘B’ is for the baseline day. (D) The experimental 663 
protocol for the UZH dataset. Here, R is for the recovery night following TSD. (E) The 664 
experimental protocol for the Stockholm dataset. PSD is for partial sleep deprivation of one night 665 
(3-h TIB). 666 

 667 
Figure 3 668 
Figure 3. The effect of total sleep deprivation on the brain age. The predicted brain age of each 669 
participant is labeled as a blue diamond. The change in brain age between a pair of experimental 670 
conditions, corresponding to the x-axis, is labeled as a red diamond. The label of x-axis (left side, 671 
each panel) is corresponding to the experimental sequence. B is for the baseline condition. R is 672 
for the recovery sleep condition. TSD is for the total sleep deprivation condition. Green circles 673 
represent the means. Grey bars represent 95% CI. * indicates a statistically significant effect at p 674 
< 0.05 (n.s.: p >= 0.05) via the paired sample t-test. 0 is enclosed by a red box, which indicates 675 
no change between any two conditions. (A) Left: the predicted brain age across three 676 
experimental conditions in the Somnosafe dataset. Right: the pair-wise comparison of brain age 677 
change (TSD – B: t(33) = 3.3847, p = 0.0019, mean difference = 0.9361 years; TSD – R: t(33) = 678 
2.9255, p = 0.0062, mean difference = 0.8959 years; R – B: t(33) = 0.1580, p = 0.8754, mean 679 
difference = 0.0402 years). (B) Left: the predicted brain age across two experimental conditions 680 
in the NRU dataset. Right: the pair-wise comparison of brain age change (TSD – B: t(19) = 681 
3.2133, p = 0.0046, mean difference = 2.1255 years). (C) Left: the predicted brain age across 682 
three experimental conditions in the UZH dataset. Right: the pair-wise comparison of brain age 683 
change (TSD – B: t(19) = 2.3645, p = 0.0289, mean difference = 1.0739 years; TSD – R: t(19) = 684 
2.2394, p = 0.0373, mean difference = 0.9497 years; R – B: t(19) = 0.4715, p = 0.6426, mean 685 
difference = 0.1241 years;). (D) The similarity between the T statistic maps derived from the 686 
paired t-test between the data collected after the night of total sleep deprivation and the data 687 
collected after the baseline night. Left: The results were based on the comparison of grey matter 688 
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volume in the three datasets. The similarity was assessed by using the Pearson correlation 689 
coefficient r as shown in each cell. The exemplar slices of the T statistic maps were shown below 690 
for each dataset. Right: The results were based on the comparison of white matter volume.   691 
 692 

Figure 4 693 

Figure 4. The effect of partial sleep deprivation on the brain. (A) Left: the predicted brain age 694 
across three experimental conditions in the CSR dataset. Right: the pair-wise comparison of 695 
brain age change. No significant effect was detected (PSD – B: t(14) = 0.7444, p = 0.4689, mean 696 
difference = 0.2546 years; PSD – R: t(14) = 0.9675, p = 0.3497, mean difference = 0.2176 years; 697 
R – B: t(14) = 0.1497, p = 0.8831, mean difference = 0.0370 years). (B) Left: the predicted brain 698 
age across two experimental conditions in the Stockholm dataset. Right: the pair-wise 699 
comparison of brain age change. No significant effect was detected (PSD – B: t(40) = -1.6969, p 700 
= 0.0975, mean difference = -0.4773 years). 701 
 702 

Figure 5 703 
Fig. 5. The associations between the change of brain age and sleep behavior in the Somnosafe 704 
dataset. Δbrainage refers to the change of brain age (TSD – baseline), which is normalized by the 705 
corresponding chronological age. The horizontal red (blue) arrow points to the increased 706 
(decreased) brain age after TSD. Pearson correlation coefficient (r) and p value (p) are shown. 707 
The least-squares reference line (dashed and red) is used to show the linear tendency for the 708 
correlation. (A) The association between the KSS change (ΔKSS, TSD – baseline) and 709 
Δbrainage. The results after adding covariates are shown in Figure 4-1. (B) The association 710 
between the normalized wake time (WT, TSD / baseline) in the recovery night following TSD 711 
and Δbrainage. 1 is enclosed by a red box, which indicates equal WT between two conditions. 712 
(C) The association between the normalized N1 in the recovery night following TSD and 713 
Δbrainage. N1 refers to the time spent in stage N1 sleep during sleep period time.  714 
 715 

Tables: 716 

 717 

Table 1 718 
Demographic information of the participants of five datasets after quality control.  719 
 720 

Table 2 721 
The repeated measures ANOVA results of brain age in the Somnosafe dataset. C refers to the within-722 
subject effect corresponding to different sleep conditions. ** indicates p < 0.005. SumSq: Type III Sum of 723 
Squares. DF: degree of freedom. η2: partial eta squared. Mauchly’s test for sphericity: p = 0.396.  724 
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Table 1 

Demographic information of the participants of five datasets after quality control 

Datasets 
Age 

(mean ± std) 

Gender 
(female/male) 

Number of 
MRI scans 

Having TSD

（yes or no） 

Having PSD 

（yes or no） 

Somnosafe 

Control 

group 
27.71 ± 6.02 5/9 3 yes no 

Experimental 
group 

25.60 ± 3.44 8/12 3 yes yes (5 nights) 

CSR 28.25 ± 5.39 7/8 3 no yes (5 nights) 

NRU 24.05 ± 2.76 0/20 2 yes no 

UZH 25.06 ± 3.23 0/20 3 yes no 

Stockholm 23.85 ± 2.58 21/20 2 no yes (1 night) 
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Table 2 
 
The repeated measures ANOVA results of brain age in the Somnosafe dataset. C refers to the within-

subject effect corresponding to different sleep conditions. ** indicates p < 0.005. SumSq: Type III Sum of 

Squares. DF: degree of freedom. η2: partial eta squared. Mauchly’s test for sphericity: p = 0.396. 

 

 

 

Source SumSq DF F PValue η2 

C 20.189 2 7.486 0.00128** 0.205 

Age × C 3.819 2 1.416 0.251 0.0466 

Gender × C 4.490 2 1.665 0.198 0.0543 

Group × C 0.0337 2 0.0125 0.988 0.0004 

Group × Gender × C 2.799 2 1.038 0.361 0.0346 

Error 78.214 58    












